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If M=ZD, and B is a finite (nonabelian) group, then BM is a compact group;
a multiplicative cellular automaton (MCA) is a continuous transformation
G: BM QBM which commutes with all shift maps, and where nearby coordi-
nates are combined using the multiplication operation of B. We characterize
when MCA are group endomorphisms of BM, and show that MCA on BM

inherit a natural structure theory from the structure of B. We apply this struc-
ture theory to compute the measurable entropy of MCA, and to study conver-
gence of initial measures to Haar measure.
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1. INTRODUCTION

If B is a finite set, andM is some indexing set, then the configuration space
BM is the set of all M-indexed sequences of elements on B. If B is discre-
tely topologised, then the Tychonoff product topology on BM is compact,
totally disconnected, and metrizable. If M is an abelian monoid (e.g.,
M=ZD, NE, or ZD×NE), then the action of M on itself by translation
induces a natural shift action of M on configuration space: for all v ¥M,
and b=[bm |m ¥M] ¥BM, define sv[b]=[b −m |m ¥M] where, -m, b

−

m=bv+m.
A cellular automaton (CA) is a continuous map G: BM QBM which

commutes with all shifts: for any m ¥M, sm
pG=G p sm. A result of

Curtis, Hedlund, and Lyndon (1) says any CA is determined by a local map
g: BV QB (where V …M is some finite subset), so that, for all m ¥M, if
we define m+V={m+v; v ¥V}, and for all b ¥BM, if we define b|(m+V)

to be the restriction of b to an element of B (m+V), then G(b)m=g(b|m+V).



If (B, · ) is a finite multiplicative group, let End[B] be the set of
group endomorphisms of B. A multiplicative cellular automaton (MCA) is
a CA whose local map is a product of affine endomorphisms of separate
coordinates. To be precise, let v: [1 · · · I]QV be a (possibly noninjective)
map, let g1, g2,..., gI ¥ End[B], and let g0, g1,..., gI ¥B be constants. If
b=[bv |v ¥V] ¥GV, then the local map g has the form:

g(b)=g0 ·g1(bv[1]) · g1 ·g2(bv[2]) · g2 · ... · gI−1 ·gI(bv[I]) · gI (1)

The ordering function v imposes an order on this product, which is neces-
sary if B is nonabelian. The endomorphisms [gi |

I
i=1] are called the coeffi-

cients of G. We can rewrite Eq. (1) as

g(b)=g·g −1(bv[1]) ·g
−

2(bv[2]) · ... ·g
−

I(bv[I])=g·D
I

i=1
g −i(bv[i]), (2)

where g=g0 · g1 · ... · gI, and, for each i ¥ [1 · · · I], g
−

i(b)=(gI gI−1 · · · gi)
−1 ·

gi(b) · (gI gI−1 · · · gi) is an endomorphism. The product ‘‘<I
i=1’’ inherits the

obvious order from [1 · · · I]. We assume MCAs are written in the form (2),
and call g the bias. If the bias is trivial (G is ‘‘unbiased’’), then g(b) is just a
product of endomorphic images of the components {bv}v ¥V.

BM is a compact group under componentwise multiplication; an
endomorphic cellular automaton (ECA) is a topological group endo-
morphism G: BM QBM which commutes with all shift maps. If B is
abelian, then all unbiased MCA are ECA, and vice versa; when B is
nonabelian, however, the ECA form only a small subclass of MCA (see
Section 2).

Example 1. Consider the following local maps:

(a) LetM=Z, V={0, 1}, and let g(b0, b1)=b0 · b1.

(b) M=N, V=[0· · · 2]; g(b0, b1, b2)=b0 · b1 · b2.

(c) M=N, V=[0· · · 2]; g(b0, b1, b2)=b
4
2 · b

3
1 · b0.

(d) M=Z2,V=[−1· · · 1]2; g(b)=(g ·b(−1, 0) · g−1) · b(0, −1) · b(0, 0) · b(0, 1)
· h · b−1(1, 0), where g, h ¥B are constants.

(e) Suppose B=GLn(F) is the group of invertible n×n matrices over
a finite field F and let g(B−1, B0, B1)=det[B−1] ·det[B1]2 ·B0.

Example 1a is the nearest-neighbour multiplication CA. (2, 3) Examples
1a–c are unbiased, and all coefficients are the identity map on B.

248 Pivato



In Example 1c, v: [1 · · · 8]Q [0 · · · 2] is defined: v[1]=v[2]=v[3]
=v[4]=2, v[5]=v[5]=v[7]=1, and v[8]=0; by repeating indices in
this way, we can obtain any exponents we want.
In Example 1d, suppose card[B]=B; then v: [1 · · · 4+B]QV is

defined: v[1]=(−1, 0), v[2]=(0, −1), v[3]=(0, 0), v[4]=(0, 1), and
v[n]=(1, 0) for n ¥ [5 · · · 4+B]; in this way, we obtain the exponent
bB−1(1, 0)=b

−1
(1, 0). All coefficients are the identity map, except for g1(b)=g·

b · g−1, which is the endomorphism of conjugation-by-g.
In Example 1e, let I ¥GLn(F) be the identity matrix. Then g1(B)=

det[B] · I and g2(B)=det[B]2 · I are endomorphisms of GLn(F), and
g3=Id. In fact, Example 1e is an ECA.
When B is an additive abelian group (e.g., B=(Z/p,+)), unbiased

MCA are called linear CA (or affine CA, when biased). Classical modular
arithmetic has been applied to study the entropy, (4) and computational
complexity (2, 3) of linear CA, while techniques of harmonic analysis yield
convergence of initial probability measures on BM to the uniformly dis-
tributed, or Haar measure under iteration by affine CA. (5–9) However, the
case when B is nonabelian is poorly understood; ‘‘abelian’’ techniques
usually fail to apply.
In Section 2, we give necessary and sufficient conditions for an MCA

to be endomorphic. In Section 3, we use the structure theory of the group
B to develop a corresponding structure theory for MCA over B. We apply
this structure theory in Section 4, to compute the measurable entropy of
MCA, and in Section 5 to establish sufficient conditions for convergence
of initial measures to Haar measure under iteration of MCA. The major
results are Theorems 4, 16, and 21.

2. ENDOMORPHIC CELLULAR AUTOMATA

Suppose G: BM QBM is an ECA. Since G ¥ End[BM], the local map
g must be a group homomorphism from the product group BV into B.
This constrains the coefficients {gv}v ¥V and their interactions.

Lemma 2. Let g: BV QB be a group homomorphism. Then there
are endomorphisms gv ¥ End[B] for all v ¥V so that, for any b=
[bv |v ¥V] ¥BV, g(b)=<v ¥V gv(bv), where this product is commutative.

Proof. For each v ¥V, let iv: BQBV be the embedding into the vth
coordinate: for any b ¥B, (iv(b))v=b, and (iv(b))w=e for all w ] v in V,
where e ¥B is the identity element. Then define gv=g p iv. If b=[bv |v ¥V],
then clearly, b=<v ¥V iv(bv), where the factors all commute, and thus,
g(b)=g(<v ¥V iv(bv))=<v ¥V g(iv(bv))=<v ¥V gv(bv), where, again, the
factors all commute. L
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We say two endomorphisms gw and gv have commuting images if, for
any bw, bv ¥B, gv(bv) ·gw(bw)=gw(bw) ·gv(bv). Thus, the coefficients of any
ECA G must all have commuting images; this restricts the structure of G,
and the more noncommutative B itself is, the more severe the restriction
becomes. The noncommutativity of B is measured by two subgroups: the
centre, Z(B)={z ¥B; -b ¥B, b · z=z·b}, and the commutator subgroup,
[B, B]=Ob · h · b−1 · h−1; b, h ¥BP. If f: BQA is any homomorphism
from B into an abelian groupA, then [B, B] … ker[f].

Corollary 3. Contining with the previous notation,

1. If ,v ¥V so that gv is surjective, then, for all other w ¥V,
image[gw] … Z(B). If Z(B)={e}, then all other coefficients of g are
trivial.

2. Suppose v ] w ¥V are such that gv=gw. Then image[gv] is an
abelian subgroup of B, and thus, [B, B] … ker[gv]. Thus, if [B, B]=B,
then gv and gw are trivial.

3. If B is simple but nonabelian, then only one coefficient of G can
be nontrivial; this coefficient is an automorphism.

Proof. Parts 1 and 2 are straightforward. To see Part 3, note that
Z(B) is a normal subgroup, so if B is simple nonabelian, then Z(B)={e}.
On the other hand, any endomorphism of B is either trivial or an auto-
morphism. Hence, if G is nontrivial, it must have one automorphic coeffi-
cient, and then, by Part 1 all other coefficients must be trivial. L

3. STRUCTURE THEORY

We now relate the structure of the group B to the structure of MCA
on BM. We review the structure theory of dynamical systems in Section 3.1
and group structure theory in Section 3.2. In Section 3.3, we show that, if
A is a fully characteristic subgroup of B, and C=B/A, then the decom-
position of B intoA and C yields a corresponding decomposition of MCA
on BM.

Notation. We will often decompose objects (e.g., groups, spaces,
measures, functions) into factor and cofactor components. We will use
three lexicographically consecutive letters to indicate, respectively, the
cofactor, product, and factor (e.g., for groups: A+B“ C; for mea-
sure spaces: (Y, Y, m)=(X×Z, , X éZ, l é n); for dynamical systems,
G=F a H; for cellular automata, G=F a H, and for their local maps,
g=f a h, etc.).
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3.1. Relative and Nonhomogeneous CA

Let X and Z be a topological spaces. A topological Z-relative dynami-
cal system (10, 11) on X is a continuous map F: X×Z Q X. We write the
second argument of F as a subscript: for (x, z) ¥ X×Z, F(x, z) is written
as ‘‘Fz(x).’’ Thus, F is treated as a Z-parameterized family of fibre maps
{Fz: X Q X}z ¥ Z. Let M[X] be the set of Borel probability measures on X;
if l ¥M[X], then F is l-preserving if Fz(l)=l for all z ¥ Z.
If H: Z Q Z is a topological dynamical system, then the skew product

of F and H is the topological dynamical system G=F a H on Y=X×Z
defined: G(x, z)=(Fz(x), H(z)). Now, suppose X=AM and Z=CM,
where A and C are finite sets. If B=A×C, then there is a natural bijec-
tion AM×CM 5BM. A C-relative cellular automaton (RCA) on AM is a
continuous map F:AM×CM QAM which commutes with all shift maps:
sm
p F=F p sm, for all m ¥M. Like an ordinary CA, F is determined

by a local map f:AV×CV QA, where V …M is finite, so that, for all
(a, c) ¥BM, and m ¥M, F(a, c)m=f(a|m+V, c|m+V). For any c ¥ CV, the
local fibre map fc:AV QA is defined by fc(a)=f(c, a). IfA is a group and
fc is a product of affine endomorphisms for every c ¥ CV, then F is called a
multiplicative relative cellular automaton (MRCA).
If H: CM Q CM is a CA with local map h: CV Q C, then the skew

product F a H is a CA on BM, with local map g: BV 5AV×CV QB

defined: g(a, c)=(fc(a), h(c)).
A nonhomogeneous cellular automaton (NHCA) is a continuous map

G: BM QBM which does not necessarily commute with shift maps, but
where there is some finite V …M, so that, for all m ¥M, there is a local
map gm: B (m+V)QB so that, -b ¥BM, G(b)m=gm(b|(m+V)). Thus, for
example, any CA is an NHCA. If F:AM×CM QAM is an RCA, then, for
any c ¥ CM, the fibre map Fc:AM QAM is an NHCA.

3.2. Group Structure Theory

Let B be a group. A subgroupA …B is called fully characteristic (12) if,
for every f ¥ End[B], we have f(A) …A. We indicate this: ‘‘AOB.’’ For
example, if Z(B) is the center of B, then Z(B)OB. Observe that any fully
characteristic subgroup is normal.
The main result of this section is:

Theorem 4. Suppose that AOB, and B/A=C. If G: BM QBM

is an MCA, then there is an MCA H: CM Q CM and an MRCA F:AM×CM

QAM so that G=F a H.
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We will prove this result in Section 3.3, and also describes the struc-
ture of the local maps of H and F (see Proposition 8). First we introduce
the relevant algebraic machinery.

Semidirect Products and Pseudoproducts. Suppose A …B is a
normal subgroup, and C=B/A, and let p: B“ C be the quotient map.
Let v: C'B be a section of p —that is, for all c ¥ C, p(v(c))=c. For any
a ¥A and c ¥ C, we define a a c :=a· v(c). For every b ¥B, there are
unique a ¥A and c ¥ C so that b=a a c. Thus, the map A×C ¦ (a, c)
W a a c ¥B is a bijection.2 We call B a pseudoproduct of A and C, and

2 ... but generally not a homomorphism.

write: ‘‘B=A a C.’’
If c ¥ C, the conjugation automorphism cg ¥ Aut[A] is defined:

cga=v(c) · a ·v(c)−1.

Thus, multiplication using pseudoproduct notation satisfies the equation:

(a1 a c1) · (a2 a c2)=(a1 ·v(c1)) · (a2 · v(c2))=a1 · (c
g
1a2) · (v(c1) ·v(c2)).

(3)

In general, v(c1) ·v(c2) does not equal v(c1 · c2); this is true only B is a
semidirect product of A and C. In this case, v is an isomorphism from C

into an embedded subgroup v(C) …B, and (3) becomes:

(a1 a c1) · (a2 a c2)=(a1 · (c
g
1a2)) a (c1 · c2). (4)

In this case, we write: ‘‘B=A z C.’’ We can treat C as embedded in B, so
v is just the identity, and a a c=a·c.
We call B a polymorph of A if : (1) B=A z C; (2) A and v(C) are

both fully characteristic in B; and (3) cg ¥ Z(Aut[A]), for every c ¥ C.

Example 5.

(a) LetB=Q8={±1, ± i, ± j, ±k} be theQuaternion Group, defined
by: i2=j2=k2=−1, and q1 · q2=q3=−q2 · q1 for (q1, q2, q3)=(i, j, k) or
any cyclic permutation thereof. Let A=Z(Q8)={±1}; then C=Q8/A
5 Z/2 À Z/2. Define homomorphism p: Q8 Q C by p(±1)=O :=(0, 0),
p(± i)=I :=(1, 0), p(± j)=J :=(0, 1), p(±k)=K :=(1, 1), with ker[p]=
{±1}=A. If v: CQB is defined: v(O)=1, v(I)=i, v(J)=j, v(K)=k,
then v induces a (non-semidirect) pseudoproduct structure Q8=A a C. In
this case,A=Z(B), and multiplication satisfies the formula:
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(a1 a c1) · (a2 a c2)

=(a1 · a2 ·z(c1, c2)) a (c1 · c2) for all a1, a2 ¥A, c1, c2 ¥ C.

Here, z(c1, c2)=v(c1 · c2)−1 · v(c1) ·v(c2)=sign[v(c1) ·v(c2)]. For example,
z(I, J)=sign[k]=+1, while z(J, I)=sign[−k]=−1, and z(O, c)=1
for any c ¥ C.
(b) If p is prime and A=(Z/p,+) is the (additive) cyclic group of

order p, then Aut[A] is the (multiplicative) group (Z/p ×, · ) of nonzero
elements of the field Z/p, acting on Z/p by multiplication, mod p. The
group (Z/p ×, · ) is isomorphic to (Z/p−1,+); thus, B=Z/p z Z/p

×5

Z/p z Z/p−1 is a group of order p · (p−1), and Z/p is a characteristic
subgroup. Since Z/p × is itself abelian, B is a polymorph of Z/p.
If q divides p−1, then there is a cyclic multiplicative subgroup

Cq … Z/p
× of order q. The semidirect product Dp; q=Z/p z Cq, is also a

polymorph of Z/p. For example, if p=7, then C3={1, 2, 4}, and D7; 3=
Z/7 z C3 has cardinality 21.

3.3. The Induced Decomposition

If B=A a C, then for any a ¥AM and c ¥ CM, define b=a a c ¥BM

by bm=am a cm for allm ¥M; we will thus identifyAM×CM with BM.
Suppose B=A z C, and let G: BZ QBZ be the nearest neighbour

multiplication CA, Example 1a. If b=a a c, then Moore (3) noted that

g(b0, b1)=(a0 a c0) · (a1 a c1)=(a0 · c
g
0a1) a (c0 · c1)=fc(a0, a1) a h(c0, c1)

where h: C{0, 1}Q C is defined h(c0, c1)=c0 · c1, and f:A{0, 1}×C{0, 1}QA is
defined fc(a0, a1)=a0 · c

g
0a1. Thus, G=F a H, where H: CM Q CM is the

CA with local map h, and F:AM×CM QAM is the RCA with local map f.
In other words, the decomposition of B=A z C induces a decomposition
of G. We now generalize this idea to arbitrary MCA.

Lemma 6. Suppose AOB, C=B/A, and B=A a C. Let
g ¥ End[B].

1. There exist f ¥ End[A] and h ¥ End[C] so that the following
diagram commutes:

A ,||Q B||“ C

f‡ g‡ h‡

A ,||Q B||“ C

We indicate this: ‘‘g=f a h.’’
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2. Define gŒ: CQA by gŒ(c)=g(v(c)) ·v(h(c))−1. If a ¥A and c ¥ C,
then g(a a c)=(f(a) ·gŒ(c)) a h(c).

3. If B is a polymorph ofA, then gŒ is trivial, so g(b)=f(a) a h(c).

4. If B is a polymorph of A and f ¥ Aut[A], then g|v(C)=Id and
h=IdC.

Proof. Part 1: Define f=g|A. Then f ¥ End[A] because AOB.
Define h by: h(b ·A)=g(b) ·A for any coset (b ·A) ¥ C. Then, for any
(b1 ·A) and (b2 ·A) in C, we have h(b1A · b2A)=h((b1 · b2) ·A)=
g(b1 · b2) ·A=g(b1) ·g(b2) ·A=g(b1)A ·g(b2)A=h(b1A) ·h(b2A), so H

is a endomorphism of C. Clearly, h p p=p p g.

Part 4: If a1, a2 ¥A and d1, d2 ¥D=v(C), then by (4),

f(a1) · (g(d1)g p f)(a2) · (g(d1) ·g(d2))

=(g(a1) ·g(d1)) · (g(a2) ·g(d2))=g((a1 · d1) · (a2 · d2))

=g((a1 · d
g
1 (a2)) · (d1 · d2))=f(a1) · (f p d

g
1 )(a2) ·g(d1) ·g(d2).

Cancel f(a1) and g(d1) g(d2), and note that a2 is arbitrary to conclude:
g(d1)g p f=f p d g

1 . Since d
g
1 ¥ Z(Aut[A]), commute these terms to get

g(d1)g p f=d
g
1 p f; cancel f ¥ Aut[A] to conclude that g(d1)g=d

g
1 . Now,

D is fully characteristic, so g(d1) ¥D. But the map D ¦ dW dg ¥ Aut[A] is
really just the inclusion map D 5 C+ Aut[A], and therefore injective, so
we conclude g(d1)=d1.
Thus, g|D=IdD, so g p v=v. Since p p v=IdC, we conclude: h=

h p IdC=h p p p v=p p g p v=p p v=IdC.

Parts 2 and 3 are straightforward. L

Example 7. Recall Q8=A a C from Example 5a. Define g1, g2 ¥
Aut[Q8] by Table I. Then f1=f2=IdA, while h1, h2, g

−

1, and g
−

2 are defined
by Table II.

Table I

1 −1 i − i j − j k −k

g1 1 −1 j − j k −k i − i
g2 1 −1 − i i k −k j − j
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Table II

O I J K

h1 O J K I
h2 O I K J
g −1 1 1 1 1
g −2 1 −1 1 1

Proposition 8. The statement of Theorem 4 is true. To be specific,
if G has local map

g: BV ¦ b W 1g ·D
I

i=1
gi(bv[i])2 ¥B,

(where b ¥B and gi ¥ End[B], for all i ¥ [0 · · · I])

then the local maps h: CV Q C and and f:AV×CV QA are defined as
follows. Fix a pseudoproduct representation B=A a C. Let g=f a h
for some f ¥A and h ¥ C. For all i ¥ [0 · · · I], let gi=fi a hi, where
fi ¥ End[A] and hi ¥ End[C], as in Lemma 6. Then:

1. h(c)=h·<I
i=1 hi(cv[i]), and f is defined by expression (8) later.

In particular:

2. Suppose B is a polymorph of A, and fi ¥ Aut[B], -i ¥ [0 · · · I].
Then h(c)=<I

i=0 cv[i] and fc(a)=f·<I
i=0 f

i
c(av[i]), where, -i \ 0, -a ¥A,

f ic(a)=h
gcgv[0] c

g
v[1] · · · c

g
v[i−1] fi(a).

3. Suppose A … Z(B). Treat A as an additive group (A,+). Then
Fc(a)=L(a)+P(c), where L:AM QAM is a linear cellular automaton
with local map

l:AV ¦ a W 1 C
I

i=0
fi(av[i])2 ¥A (5)

and P: CM QAM is a block map with local map p: CV QA given by (9)
later.

Example 9.

(a) Suppose A … Z(B), as in Part 3 of Proposition 8. If g(b)=
bn1v1
bn2v2
· · · bnJvJ

, then l(a)=;v ¥V av · av, where av=;vj=v nj for each v ¥V.
Meanwhile, h(c)=cn1v1

cn2v2
· · · cnJvJ

.
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(b) Consider Example 1b, with B=Z/5 z Z/4. In this case, hi=IdC

and fi=IdA for all i. Thus, H: (Z/4)Z Q (Z/4)Z is the linear CA with local
map: h(c0, c1, c2)=c0+c1+c2. For any a ¥ Z/5 and c ¥ Z/4, cga=2c · a;
thus, Part 2 of Proposition 8 implies that f: (Z/5)[0 · · · 2]×(Z/4)[0 · · · 2]Q Z/5
is defined for all (a0, a1, a2) ¥ (Z/5)[0 · · · 2] and (c0, c1, c2) ¥ (Z/4)[0 · · · 2], by:
f(c0, c1, c2)(a0, a1, a2)=a0+2

c0a1+2c0+c1a2.

(c) Consider Example 1c, with B=Z/5 z Z/4. Now H: (Z/4)Z

Q (Z/4)Z has local map h(c0, c1, c2)=c0+3c1+4c2 — c0−c1 (mod 4).
Meanwhile, Part 2 of Proposition 8 implies that

f(c0, c1, c2)(a0, a1, a2)

=a2+2c2a2+22c2a2+23c2a2+24c2a1+24c2+c1a1+24c2+2c1a1+24c2+3c1a0

=(1+2c2+22c2+23c2) a2+(24c2+24c2+c1+24c2+2c1) a1+24c2+3c1a0.

(d) Recall g1, g2 ¥ Aut[Q8] from Example 7, and define g: Q
[0 · · · 2]
8 Q

Q8 by g(q0, q1, q2)=q0 ·g1(q1) ·g2(q2). Identify {±1}=A with (Z/2,+),
and identify C with Z/2 À Z/2 as described in Example 5a. Then by Part 3
of Proposition 8,

l(a0, a1, a2)=a0+f1(a1)+f2(a2)=a0+a1+a2;

h(c0, c1, c2)=c0+h1(c1)+h2(c2)=5
c0, 1
c0, 2
6+50 1

1 1
65c1, 1
c1, 2
6+51 1

0 1
65c2, 1
c2, 2
6.

(where ci=[
ci, 1
ci, 2] ¥ Z/2 À Z/2, for i=0, 1, 2). Also, applying (9) later,

p(c0, c1, c2)=e(c0, c1, c2)+IdŒ(c0)+g −1(c1)+g −2(c2)=e(c0, c1, c2)+g −2(c2),

where

e(c0, c1, c2)=˛
0 if v(c0) ·v(c1) ·v(h2(c2))=v[c0 · c1 ·h2(c2)]

1 if v(c0) ·v(c1) ·v(h2(c2))=−v[c0 · c1 ·h2(c2)]
.

(e) g: Q[0 · · · 3]
8 Q Q8 by g(q0, q1, q2, q3)=q3 · q

3
0 · q

5
2 · q

−1
1 . Then, in addi-

tive notation, l(a0, a1, a2, a3)=a0+a1+a2+a3 and h(c0, c1, c2, c3)=c0+
c1+c2+c3 (mod 2).

Proof of Proposition 8. For i ¥ [0 · · · I], define f i: CV×AQA by

f ic(a)=1h ·D
i−1

j=0
hj(cv[j])2

g
(fi(a) ·g

−

i(cv[i])); (6)

256 Pivato



for example, f0c(a)=h
g(f0(a) ·g

−

0(cv[0])). Next, define e: C
V QA by:

e(c)=1v(h) ·D
I

i=0
v(hi(cv[i]))2 ·v 1h ·D

I

i=0
hi(cv[i])2

−1

, (7)

and define f:AV×CV QA by:

fc(a)=f·1D
I

i=0
f ic(av[i])2 · e(c). (8)

To prove Part 1, we must show, for any a ¥AV and c ¥ CV, that
g(a a c)=fc(a) a h(c).
To see this, let c=[cv |v ¥V] ¥ CV and a=[av |v ¥V] ¥AV. Then

g(a a c)=g·D
I

i=0
gi(av[i] ·v(cv[i]))=f·v(h) ·D

I

i=0
gi(av[i]) ·gi(v(cv[i])).

In the case I=1, this becomes:

g(a a c)=f·v(h) ·g0(av[0]) ·g0(v(cv[0])) ·g1(av[1]) ·g1(v(cv[1]))

=f·v(h) · f0(av[0]) ·g
−

0(cv[0]) · v(h0(cv[0])) · f1(av[1])

·g −1(cv[1]) · v(h1(cv[1]))

=f·v(h) · f0(av[0]) ·g
−

0(cv[0]) ·h0(cv[0])
g (f1(av[1]) g

−

1(cv[1]))

·v(h0(cv[0])) ·v(h1(cv[1]))

=f·hg(f0(av[0]) ·g
−

0(cv[0])) · (h ·h0(cv[0]))
g (f1(av[1]) ·g

−

1(cv[1]))

·v(h) · v(h0(cv[0])) ·v(h1(cv[1]))

=f· f0c(av[0]) · f
1
c(av[1]) · e(c) ·v(h ·h0(cv[0]) ·h1(cv[1]))

=fc(a) · v(h(c))=fc(a) a h(c).

A similar argument clearly works for I \ 2.
It remains to show that e(c) ¥A, which is equivalent to showing that

p(e(c))=eC, where p: B“ C is the quotient map and eC ¥ C is the identity.
But

p(e(c))=p 51v(h) ·D
I

i=0
v(hi(cv[i]))2 ·v 1h ·D

I

i=0
hi(cv[i])2

−16

=p(v(h)) ·D
I

i=0
p(v(hi(cv[i]))) ·p 1v 1h ·D

I

i=0
hi(cv[i])22

−1

=h·D
I

i=0
hi(cv[i]) ·1h ·D

I

i=0
hi(cv[i])2

−1

=eC.

Multiplicative Cellular Automata on Nilpotent Groups 257



Part 2: g −i and e are trivial, and Part 4 of Lemma 6 implies that
hi=IdC, -i ¥ [0 · · · I].

Part 3: All the conjugation automorphisms are trivial, so expression
(6) (written additively) simplifies to f ic(a)=fi(a)+g −i(c), for all i ¥ [0 · · · I].
Substitute this into (8), to get

fc(a)=f+C
I

i=0
(fi(a)+g −i(c))+e(c)=l(a)+p(c),

where

p(c)=f+e(c)+C
I

i=0
g −i(bv[i]), (9)

and l(a) is as in (5). L

Application to Nilpotent Groups. A fully characteristic series is an
ascending chain of subgroups:

{e}=Z0 OZ1 O · · · OZK=B. (10)

where each is fully characteristic in the next. For example, the upper central
series of B is the series (10), where Z1=Z(B), and for each k \ 1, Zk+1 is
the complete preimage in B of Z(Ck) under the quotient map B“ Ck
:=B/Zk, until we reach K > 0 so that ZK=ZK+1=ZK+2=·· · . Thus, for
all k ¥ [1 · · ·K], the factor groups Qk=Zk/Zk−1 5 Z(B/Zk−1) are abelian
(but CK=B/ZK is not). In general, ZK ]B; if they are equal, then B is
called nilpotent, and C is trivial.

Example 10. Let B=Q8 from Example 5a. Then Z1=Z(Q8)=
{±1}, and Q8/Z1 5 Z/2 À Z/2 is abelian, so that Z2=Q8. Thus, Q8 is nil-
potent, with upper central series: {1}O {±1}O Q8.

We can apply Theorem 4 recursively to a totally characteristic series
like (10). Let A1=Z1, and C1=B/A1, and write B=A1 a C1, so that
G=F1 a H1, where H1: C

M
1 Q CM

1 and F1:A
M
1 ×C

M
1 QAM

1 are multipli-
cative. The series (10) induces a fully characteristic series

{e}=Z1/1 OZ2/1 O · · · OZK/1=C1, (11)

where for each k ¥ [1 · · ·K], we let Zk/1=Zk/A1 … C1. Now let A2=Z2/1
and C2=C1/A2 5B/Z2, and write C1=A2 a C2, so that H1=F2 a H2,
where F2:A

M
2 ×C

M
2 QAM

2 and H2: C
M
2 Q CM

2 . Proceed inductively. In
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particular, if B is nilpotent, apply this to the upper central series to obtain
a decomposition: G=F1 a (F2 a [ · · · a (FK−1 a H) · · · ]), where, for all
k ¥ [1 · · ·K), Fk:A

M
k ×C

M
k QAM

k is an affine RCA, while H:A
M
K QAM

K is
an affine CA on the final abelian factorAK=B/ZK−1.

4. ENTROPY

Throughout this section, M=Z or N, and V=[V0 · · ·V1] …M. Let
L=−min{V0, 0} and R=max{0, V1}, and let V=R+L. Let B be a finite
set, with B=card[B]. If c ¥B[J · · ·K) and OcP={b ¥BZ; b|[J · · ·K)=c} is the
corresponding cylinder set, we say OcP is a cylinder set of length a=K−J.
Let gB be the uniformly distributed Bernoulli measure on BZ, which
assigns probability B−a to all cylinder sets of length a. If Y1, Y2 … Z are
disjoint, and bk ¥BYk, then we define b1 _b2 ¥BY1 cY2 by: (b1 _b2)|Yk=bk,
for k=1, 2. Thus, Ob1 _b2P=Ob1P 5 Ob2P. Also, if Y … Z and X=Y+V,
then we abuse notation by letting G: BX QBY be the ‘‘local map’’ induced
by G.

4.1. Permutativity and Relative Permutativity

A local map g: BV QB is left permutative if L > 0 and, for every
b ¥B (−L · · ·R] the map B ¦ aW g(a_b) ¥B is a bijection; g is right permuta-
tive if R > 0 and, for every b ¥B[−L· · ·R) the map B ¦ cW g(b_c) ¥B is a
bijection. g is permutative if it is either left- or right-permutative. A CA
on BZ is bipermutative if it is permutative on both sides; a CA on BN is
called bipermutative if it is right-permutative. If V=R+L then we say g

is V-bipermutative. A nonhomogeneous CA G is V-bipermutative if gm is
V-bipermutative for every m ¥M. A relative CA F:AM×CM QAM is
V-bipermutative if the NHCA Fc is V-bipermutative for every c ¥ CM.

Example 11.

(a) If B=(Z/n,+) and V0 < 0 < V1, then a linear CA with local map
g(b)=;V1

v=V0 gv · bv is left- (resp. right-) permutative iff gV0 (resp. gV1 ) is rel-
atively prime to n.
(b) In Example 9b, H is a 3-bipermutative CA, while F is a

3-bipermutative RCA.
(c) In Example 9c, h(c0, c1, c2)=h(c0, c1)=c0−c1 is right-permuta-

tive, with V={0, 1}, so H is 2-bipermutative as a map on CN. However,
F is not right-permutative. To see this, write:

f(c0, c1, c2)(a0, a1, a2)=f0(c0, c1, c2)(a0)+f1(c0, c1, c2)(a1)+f2(c0, c1, c2)(a2).

Multiplicative Cellular Automata on Nilpotent Groups 259



Then:

f2(c0, c1, c2)=1+2
c2+22c2+23c2=˛4 (mod 5) if c2=0 or 4;

0 (mod 5) if c2=1, 2 or 3;

Thus, f(c0, c1, c2) is right-permutative if and only if c2=0 or 4.

The following results extend well-known properties of permutative
cellular automata (1) to the nonhomogeneous case; the proofs are similar,
and are left to the reader.

Lemma 12. Let J < K, and a=K−J. Let G be an NHCA, and let
d ¥B[J · · ·K).

1. If G is right-permutative, then for all b ¥B[J−L· · · J+R), there is a
unique c ¥B[J+R· · ·K+R) so that G(b_c)=d.

2. If G is left-permutative, then for all b ¥B[K−L· · ·K+R), there is a
unique a ¥B[J−L· · ·K−L) so that G(a_b)=d.

3. If G is bipermutative, then for any j ¥ [J · · ·K) and b ¥

B[j−L · · · j+R), there are unique a ¥B[J−L· · · j−L) and c ¥B[j+R· · ·K+R) so that
G(a_b_c)=d.

Corollary 13. If G is permutative, then gB is G-invariant.

4.2. Measurable Entropy

Suppose (Y, Y, m) is a probability space, Q is a finite set, and
Q: Y Q Q is measurable; we say Q is a partition of Y, indexed by Q. If
r=Q(m) ¥M[Q], then let h(Q; m)=−;q ¥ Q r[q] · log (r[q]). If Qk: Y Q Qk
for k=1, 2, then let Q1 KQ2: Y Q Q1×Q2 be the partition mapping y ¥ Y
to (Q1(y), Q2(y)). If G: Y Q Y is m-preserving, then define GQ=Q p G. If
G is invertible (respectively noninvertible), let T=Z (respectively T=N);
for any I … T, define G IQ=Ji ¥ I G i Q: Y Q Q I. The G-entropy of Q is the
limit: h(Q, G, m)=limNQ.

1
N h(G

[0 · · ·N)Q; m).
Let S(GTQ) be the smallest s-algebra for which the function GTQ is

measurable. Q is a generator for G if S(GTQ) is m-dense in Y, meaning
that, for all V ¥Y, there is W ¥ S(GTQ) so that m(VDW)=0; the (mea-
surable) entropy of the system (Y, Y, m; G) is then defined: h(Y, Y, m; G)
=h(Q, G, m) (independent of the choice of generator).

Suppose that {Rn}
.

n=0 is a collection of NHCA on B
M. For any n ¥N,

define R (n)=Rn−1 pRn−2 p · · · pR0. If Q is a partition, then, for all N ¥N,
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define R[0 · · ·N)Q=JN−1
n=0 R

(n)Q. Thus, if Rn=G for all n ¥N, then
R (n)=Gn, and R[0 · · ·N)Q=G[0 · · ·N)Q.
Say that Qk: Y Q Qk (k=1, 2) are equivalent if each is measurable with

respect to the other. Then, for any m ¥M[Y], h(Q1; m)=h(Q2; m).

Proposition 14. Let Rn be V-bipermutative, for all n ¥N. Let
m ¥M[BM] and let Q=pr[−L· · ·R): BM QB[−L· · ·R). Then:

1. R[0 · · ·N)Q and pr[−NL· · ·NR) are equivalent. Thus, h(R[0 · · ·N)Q; m)=
h(pr[−NL· · ·NR); m).

2. S(RNQ) is the Borel sigma-algebra of BM.

In particular, suppose Rn=G, for all n ¥N. Then:

3. Q is a (G, m)-generator.

4. If m is s-invariant and G-invariant, then h(G; m)=V·h(s; m).

In particular, h(G; gB)=V· log(B).

Proof. Part 1 is proved by repeated application of Part 3 from
Lemma 12. The other statements then follow. L

Remark. By combining Part 4 with Example 11a, we recover the
previously computed (4) entropy of linear CA on ((Z/p)Z, gB).

4.3. Relative Entropy

Let Y=X×Z, G=F a H, and l ¥M[X] be as in Section 3.1. If
n ¥M[Z] is H-invariant, then m=l é n is G-invariant. For any z ¥ Z and
n ¥N, define F (n)z =FHn−1(z) p · · · p FH2(z) p FH(z) p Fz. If P: X QP is a parti-
tion, then for all z ¥ Z, let G[0 · · ·N)

z P: X QPN be the partition: G[0 · · ·N)
z P

=JN−1
n=0 F(n)z P, and define h(P; F, l/H, n)=limNQ.

1
N >Z h(G

[0 · · ·N)
z P, l) dn[z].

The relative entropy of F over H is defined: h(F, l/H, n)=supP h(P; F,
l/H, n), where the supremum is taken over all measurable partitions P
of X.

Theorem 15. h(G, l× n)=h(H, n)+h(F, l/H, n). (Abramov and
Rokhlin). (11, 13)

Theorem 16. Let B=A×C. Let l ¥M[AM], n ¥M[CM], and
m=l é n ¥M[BM] be s-invariant. Suppose G=F a H, where F:
AM×CM QAM is l-preserving and V-bipermutative, while H: CM Q CM is
n-preserving andW-bipermutative. Then:
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(1) h(F, l/H, n)=V·h(l, s);

(2) h(H, n)=W·h(n, s);

(3) h(G, m)=V·h(l, s)+W·h(n, s).

Proof. To see (1), let Q=pr[−L· · ·R):AM QA[−L· · ·R). Fix c ¥ CM, and,
for all n ¥N, let Rn=FH

n(c). Then R(n)=F(n)c , and R
[0 · · ·N)Q=G[0 · · ·N)

c Q, so
Part 1 of Proposition 14 says: h(G[0 · · ·N)

c Q; l)=h(pr[−NL· · ·NR); l).
Let P:AM QP be any other partition of AM, and fix E > 0. Then,

by Part 2 of Proposition 14, there is some M=M(c) > 0 so that, for all
N ¥N, h(G[0 · · ·N)

c P; l) < NE+h(G[0 · · ·N+M)
c Q; l). If card[P]=P, then also,

h(G[0 · · ·N)
c P; l) < N log(P). Find M so that m[D] < E/log(P), where D=

{c ¥ CM; M(c) >M}. Then

F
C
M
h(G[0 · · ·N)

c P; l) dn[c]

=F
D

h(G[0 · · ·N)
c P; l) dn[c]+F

C
M
0D

h(G[0 · · ·N)
c P; l) dn[c]

< 1N log(P) E

log(P)
2+NE+h(pr[−(N+M) L· · · (N+M) R); l).

Thus, h(P; F, l/H, n) < 2E+limNQ.

1
N h(pr[−NL· · ·NR); l)=2E+V·h(s; l).

Take the supremum over all P to conclude: h(F, l/H, n) < 2E+V·h(s; l).
Now let EQ 0.

(2) follows from Part 4 of Proposition 14 and (3) follows from
Theorem 15. L

Note that, in Theorem 16, B need not be a group, nor G a multiplica-
tive cellular automaton. However, Theorem 4 provides a natural skew
product decomposition in this case.

Example 17. In Example 11b, V=W=2, card[A]=5 and
card[C]=4; thus h(G, gB)=2· log2(5)+2· log2(4)=2 log2(5)+4.

5. CONVERGENCE OF MEASURES

Endow M[BM] with the weak* topology induced by C(BM; C), the
space of continuous, complex-valued functions. The uniformly distributed
Bernoulli measure gB ¥M[BM] is the Haar measure on BM as a compact
group, and is invariant under the action of any left- or right-permutative
MCA (Lemma 13). Thus, if m ¥M[BM] is some initial measure, then gB is
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a natural candidate for the (Cesàro) limit of Gnm as nQ.. Since gB is the
measure of maximal entropy on BM, such limiting behaviour is a sort of
‘‘asymptotic randomization’’ of BM. When B is abelian, and G is an affine
CA, the Cesàro convergence of measures to gB is somewhat under-
stood; (5–9) we now extend these results to nonabelian MCA.

Harmonic Mixing and Diffusion. The characters of an abelian
group (A,+) are the continuous homomorphisms from A into the unit
circle group (T1, · ) … C. The set of characters forms a group, denoted A1.
For example, if A=Z/n, then every q ¥A1 has the form q(a)=
exp(2p i

n c · a), where c ¥ Z/n is a constant coefficient, and the product c · a is
computed mod n.
For any q ¥AM5 there is some finite K …M and, for each k ¥K,

a nontrivial qk ¥A1, so that, if a ¥AM, then q(a)=<k ¥K qk(ak); we indi-
cate this: ‘‘q=êk ¥K qk.’’ For example, if A=Z/n, this means there is
a collection of nonzero coefficients [ck |k ¥K] so that if a ¥AM, then
q(a)=exp(2p i

n ;k ¥K ck · ak).
The rank of q ¥AM5 is the cardinality of K. Let m ¥M[AM]; we will

use the notation Oq, mP=>AM qdm. We call m harmonically mixing (and
write ‘‘ m ¥HM[AM]’’) if, for all E > 0, there is r ¥N so that, if q ¥AM5

and rank[q] > r, then |Om, qP| < E. For example, most Bernoulli mea-
sures (7) and Markov random fields (8) onA (ZD) are harmonically mixing.
If G ¥ End[AM], then for any q ¥AM5 , the map q pG is also a

character. If J …N, then G is J-diffusive if, for every q ¥AM5 ,
limjQ., j ¥ J rank[q pG j]=.. If J=Z, then we just say G is diffusive; if
J …N is a subset of Cesàro density 1, then G is diffusive in density.

Example 18. Let (A,+) be a finite abelian group, M=ZD, and let
L be a linear CA with local map l(a)=;v ¥V avav, where av ¥ Z is relatively
prime to card[A] for all v ¥V. Then L is diffusive in density. (8)

If G is J-diffusive and m ¥HM[AM], then Theorem 12 of ref. 7 says
wkg limJ ¦ jQ. Gnm=gB. In particular, if G is diffusive in density, then the
Cesàro average weak*-converges to Haar measure:

wkg lim
NQ.

1
N

C
N

n=1
Gnm=gB. (12)

To extend these results to multiplicative cellular automata, we need a
version of diffusion applicable to affine relative cellular automata. An
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affine endomorphism ofAM is a self-map G:AM QAM of the form G(a)=
c+L(a), where L ¥ End[AM] and c ¥AM is constant. The set of affine
endomorphisms is denoted End6[AM].
An affine character is a function a:AM Q T1 of the form a(a)=

c ·q(a), where c ¥ T1 is a constant, and q ¥AM5 . The set of affine characters
of AM is denoted AM6 . For example, if z ¥AM5 , and G ¥ End6[AM], then
z pG ¥AM6 . The rank of a=c·q is the rank of q. If m ¥M[AM] is har-
monically mixing, with E and r as before, then it follows that |Om, aP| < E
for any a ¥AM6 with rank[a] > r.

Relative Diffusion. Suppose B=A a C, where A is abelian, and
let G=F a H be as in Theorem 4. For any c ¥ CM, the fibre map Fc is an
affine endomorphism; we say that F is an affine relative cellular automaton
(ARCA). For any j ¥N, G j=F (j) a H j, where F (j) is another ARCA,
so a p F (j)c ¥AM6 for any c ¥ CM and a ¥AM6 . We say G is relatively
J-diffusive if limJ ¦ jQ. rank[a p F (j)c ]=. for every c ¥ CM and a ¥AM6 . If
n ¥M[CM], and J …N, then G is n-relatively J-diffusive if,

-a ¥AM6 , -r > 0, lim
J ¦ jQ.

n{c ¥ CM; rank[a p F (j)c ] [ r}=0. (13)

Clearly, relative diffusion implies n-relative diffusion for any n ¥M[CM].

Proposition 19. If A … Z(B) as in Part 3 of Proposition 8, then
F is relatively J-diffusive if and only if L is J-diffusive as a linear cellular
automaton.

Proof. For any N ¥N, define P (N)=;N−1
n=0 L

n
pP p HN−n−1. If

j ¥ J, then F (j)c =L j+P (j)(c). Thus, for any a ¥AM6 , rank[a p F jc]=
rank[a p L j]. L

Proposition 20. Let l ¥HM[AM], n ¥M[CM], and m=l é n ¥
M[BM]. Let n̄=wkg limJ ¦ jQ. H jn, and let gA be the Haar measure
onAM. If G is n-relatively J-diffusive, then wkg limJ ¦ jQ. G jm=gA é n̄.

Proof. We want limJ ¦ jQ. Ob, G jmP=Ob, gA é n̄P, for every b ¥

C(BM; C). It suffices to assume b=a é f, where a ¥ C(AM; C) and
f ¥ C(CM; C). Since the characters of AM form a basis for the Banach
space C(AM; C), it suffices to assume a ¥AM5 , and ||f||.=1.

Then: Ob, gA é n̄P=Oa, gAP ·Of, n̄P=˛
Of, n̄P if a=1

0 if a ] 1
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Now, for all a a c ¥BM, b pG j(a a c)=(a é f)(F (j)c (a) a H j(c))=
(a p F (j)c (a)) · (f p H

j(c)). Thus, Ob, G jmP=Ob pG j, mP=>CM (f p H j(c)) ·
Oa p F (j)c , lP dn[c].
If a=1, then this integral is just equal to >CM f p H j(c) dn[c], which

converges to Of, n̄P by hypothesis. Hence, assume a ] 1; we then want to
show that limJ ¦ jQ. Ob, G jmP=0.
Fix E > 0. Since l ¥HM[AM], find r > 0 so that, if a ¥AM6 and

rank[a] > r, then |Oa, lP| < E2 . Let Dj={c ¥ CM; rank[a p F (j)c ] > r}, for
every j ¥ J. By Eq. (13), find J ¥N so that, -j ¥ J with j > J, n[Dj] > 1−

E

2 .
Then

|Ob, G jmP|=:F
C
M
f p H j(c) ·Oa p F (j)c , lP dn[c] :

[ :F
Dj

f p H j(c) ·Oa p F (j)c , lP dn[c] :

+:F
C
M
0Dj

f p H j(c) ·Oa p F (j)c , lP dn[c] :

[ F
Dj
|f p H j(c)| · |Oa p F (j)c , lP| dn[c]

+F
C
M
0Dj
|f p H j(c) ·Oa p F (j)c , lP| dn[c]

[ F
Dj
1 ·
E

2
dn[c]+F

C
M
0Dj
1 dn[c] <

E

2
+
E

2
=E. L

Suppose B is nilpotent, with upper central series (10). If k ¥ [1 · · ·K],
then Qk=Zk/Zk−1 is abelian, and the decomposition B=Q1 a (Q2 a
[ · · · (QK−1 a QK) · · · ]) induces a natural identification BM 5 QM

1 ×Q
M
2

× · · · ×QM
K . If lk ¥M[QM

k ] for all k, then l1 é · · · é lK ¥M[BM]. Let
HM[BM] denote the convex, weak*-closure inM[BM] of the set

{l1 é · · · é lK; lk ¥HM[QM
k ] for all k}.

Theorem 21. Suppose B is nilpotent, and G has a local map of the
form g(b)=bn1v1

bn2v2
· · · bnJvJ

. For every v ¥V, suppose av=;vj=v nj is rela-
tively prime to card[B].
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If m ¥HM[BM], then wkg limJ ¦ jQ. G j(m)=gB along a set J …N of
density one. Thus, Eq. (12) holds.

Proof. We’ll prove this by induction onK, the length of the series (10).
If K=1, then B is abelian; then G is diffusive in density by Example 18,
and the result follows from Theorem 12 of ref. 7.
If K > 1, then let A=Q1=Z(B), and C=B/A. Thus HM[BM] is

the convex weak* closure of S={l é n; l ¥HM[AM] andn ¥HM[CM]},
so it suffices to prove the theorem for m=l é n ¥S. Let G=F a H. Then
H has local map h(c)=cn1v1

cn2v2
· · · cnJvJ

, and, by hypothesis, all av are all rela-
tively prime to card[C]. But C has an upper central series like (11) of
length K−1, so by induction hypothesis, there is a set K …N of density
one so that wkg limK ¦ kQ. Hk(n)=gC.
SinceA=Z(B), let L be as in Part 3 of Proposition 8. As in Example 9a,

l(a)=;v ¥V av · av, and, by hypothesis, av are all relatively prime to
card[A], so, as in Example 18, L is I-diffusive for some subset I …N of
density one. Proposition 19 then implies that F is relatively I-diffusive. Let
J=I 5K, also a set of density one. Then apply Proposition 20 to conclude
that wkg limJ ¦ jQ. G jm=gA é gC=gB. L

Example 22. Recall G: QZ
8 Q QZ

8 from Example 9e. In this case,
A 5 Z/2, and L, having local map l(a0, a1, a2, a3)=a0+a1+a2+a3, is
diffusive in density, so F is relatively diffusive in density. Meanwhile,
C=Z/2 À Z/2 and H, with local map h(c0, c1, c2, c3)=c0+c1+c2+c3, is
also diffusive in density. Hence, Eq. (12) holds for any m ¥HM[QZ

8 ].

6. CONCLUSION

Multiplicative cellular automata over a group B inherit a natural
structural decomposition from B. Using this decomposition, we can
compute the measurable entropy of MCA, and show that a broad class of
initial measures converge to the Haar measure in Cesàro average. However,
many questions remain. For example, it is unclear how to show relative
diffusion when A is not central in B. Indeed, even non-relative diffusion is
mysterious for noncyclic abelian groups. (8) Also, computation of relative
entropy will be much more complicated in the case of ‘‘variably permuta-
tive’’ relative CA, such as Example 11c; perhaps this requires some ‘‘rela-
tive’’ version of Lyapunov exponents. (14, 15)

Permutative MCA are a considerable generalization of the linear
cellular automata previously studied, but they are still only a very special
class of permutative cellular automata. The asymptotics of measures for
general permutative CA (16) is still poorly understood.
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